You are currently viewing Interference Screws Head​

Interference Screws Head​

Model No: 124433-A12

Description:

Specification for Interference Screws Head

  • The diameters of interference screws are 7, 8, 9, 10, and 11 mm. There are five different lengths: 20, 25, 30, 35, and 40 mm.
  • screws made of biodegradable and pure titanium.
  • Any additional length sizes for these screws will be produced upon request.
  • This is a self-tapping screw. Self-Tapping Screws cut their own thread as they are inserted into the bone. When it enters the bone, it makes a tiny hole that forces the threads into a close friction fit. This prevents vibration-induced part loosening and makes it possible to disassemble the components if necessary.
  • There are a variety of tools available for this screw, including Bone Taps, Combined Drill & Tap Sleeve, Counter Sink, Depth Gauge, Drill Bits, Drill Guide, Drill Sleeve, Hollow Mill Screw Removal, Reverse Measuring Device, Screw Drivers, and Screw Holding Forceps, among others.

Uses of Interference Screws Head

  • Among the various graft and fixation techniques, ACLR using BPTB autograft with interference screws fixation was found to have the least amount of measurable laxity, the quickest graft incorporation time, and the lowest failure rates.
  • It has been demonstrated that biodegradable interference screws can fix grafts at least as effectively as metal screws. In cases of revision, biodegradable screws are not a hindrance to imaging methods and do not need to be taken out because the implants have either broken down or can be easily penetrated with drilling.

Other Useful Info of Interference Screws Head

Different Types of Screws including Interference Screws

Locking Cortical Screws

  • 2 mm Locking Cortical Screws
  • 2.4 mm Locking Cortical Screws
  • 2.7 mm Locking Cortical Screws
  • 3.5 mm Locking Cortical Screws
  • 5 mm Locking Cortical Screws

Cortical Screws

  • 1.5 mm Cortical Screws
  • 2 mm Cortical Screws
  • 2.4 mm Cortical Screws
  • 2.7 mm Cortical Screws
  • 3.5 mm Cortical Screws
  • 4.5 mm Cortical Screws

Locking Cancellous Screws

  • 3.5 mm Locking Cancellous Screw
  • 4 mm Locking Cancellous Screw
  • 5 mm Locking Cancellous Screw
  • 6.5 mm Locking Cancellous Screw

Cancellous Screws

  • 3.5 mm Cancellous Screw
  • 4 mm Cancellous Screw
  • 6.5 mm Cancellous Screw
  • Locking Cannulated Screws
  • 4 mm Locking Cannulated Screw
  • 5 mm Locking Cannulated Screw
  • 6.5 mm Locking Cannulated Cancellous Screw
  • 7.3 mm Locking Cannulated Cancellous Screw

Cannulated Screws

  • 3.5 mm Cannulated Screws (Cortical Thread)
  • 4 mm Cannulated Cancellous Screws
  • 4.5 mm Cannulated Cancellous Screws
  • 6.5 mm Cannulated Cancellous Screws
  • 7 mm Cannulated Cancellous Screws
  • 7.3 mm Cannulated Cancellous Screws

Headless Screws Full Thread

  • 2.5 mm Headless Compression Screws Full Thread
  • 3 mm Headless Compression Screws Full Thread
  • 3.5 mm Headless Compression Screws Full Thread
  • 4 mm Headless Compression Screws Full Thread
  • 4.5 mm Headless Compression Screws Full Thread
  • 5 mm Headless Compression Screws Full Thread
  • 5.5 mm Headless Compression Screws Full Thread
  • 6.5 mm Headless Compression Screws Full Thread

Headless Screws Partially Thread

  • 2.5 mm Headless Compression Screws Partially Thread
  • 3 mm Headless Compression Screws Partially Thread
  • 3.5 mm Headless Compression Screws Partially Thread
  • 4 mm Headless Compression Screws Partially Thread
  • 4.5 mm Headless Compression Screws Partially Thread
  • 5.5 mm Headless Compression Screws Partially Thread
  • 6.5 mm Headless Compression Screws Partially Thread
  • 7.5 mm Headless Compression Screw Partially Thread

Interlocking Nail Screws

PFNA2 Blades

PFNA Blades

  • 8 mm Proximal Cannulated Bolt
  • 6.4 mm Proximal Cannulated Bolt
  • 4.9 mm Locking Bolts
  • 3.9 mm Locking Bolts
  • 3.4 mm Locking Bolts

Interference Screws

  • 5 mm Interference Screw
  • 6 mm Interference Screw
  • 7 mm Interference Screw
  • 8 mm Interference Screw
  • 9 mm Interference Screw
  • 10 mm Interference Screw

Herbert Screws

  • 2.5 mm Cannulated Herbert Screws
  • 3 mm Cannulated Herbert Screws
  • 3.5 mm Cannulated Herbert Screws
  • 4.5 mm Cannulated Herbert Screws
  • 5.5 mm Cannulated Herbert Screws
  • 6.5 mm Cannulated Herbert Screws

Craniomaxillofacial Screws

  • 1.5 mm Screw Craniomaxillofacial
  • 2 mm Screw Craniomaxillofacial
  • 2 mm Locking Screw Craniomaxillofacial
  • 2.5 mm Screw Craniomaxillofacial
  • 2.5 mm Locking Screw Craniomaxillofacial
  • 2.8 mm Screw Craniomaxillofacial
  • 2.8 mm Locking Screw Craniomaxillofacial
  • 2.7 mm Emergency Screw

Malleolar Screws

  • 3.5 mm Malleolar Screws
  • 4.5 mm Malleolar Screws

The most frequently used orthopedic implants are bone screws. For various types of bones, there are numerous types and sizes of screws. The majority of bone screws are constructed from titanium or stainless steel alloys. When determining screw mechanics, it’s important to consider the outer diameter, root diameter, thread pitch, and angle.

A “8 mm Interference Screws” has an outside diameter of 8 mm, for example. In orthopedics, screws are typically described by their outer diameter. The linear distance covered by a screw during one complete turn is known as the pitch of the screw. With each full turn, the screw moves forward by a distance equal to the space between the threads. Cortical screws have more threads because they have a lower pitch. Given the fragility of the bone, cancellous bone screws have a deeper screw to increase surface area and enhance purchase.

Screws work by converting the torque applied to tighten them into internal tension and elastic responses in the bone around them. The fracture fragments that the screw is holding together are compressed as a result. Typically, screws are inserted into holes that have been drilled to the same diameter as the root and are either self-tapping or have been tapped (threaded) beforehand. The screws must be properly inserted into the proper size drilled hole and made to withstand the insertion torque levels anticipated in cortical bone because the torque to insert cortical bone screws can be high. Large, deep threads on cancellous bone screws allow them to securely hold the spongy bone. It is uncommon for a screw to fail during insertion due to the cancellous bone’s relatively low strength, but pull out can be problematic.

Interference Screws Risk Factor

When assessing the prognosis in each case, contraindications—which may be partial or complete—must be taken into account. Under the following circumstances, alternative management strategies may need to be taken into account:

  • infections that are systemic or local, acute or chronic.
  • either localized, systemic, or chronic inflammation.
  • serve as a dangerous vascular, nervous, or muscular disease.
  • Bone defects that would prevent the implant from being properly anchored.
  • All associated illnesses that might jeopardize the implant’s success and functionality.

Warnings and Precautionary for Interference Screws

The surgeon and support staff should read the safety instructions in this document as well as any product-specific information in the product description, surgical techniques, and/or brochures before using Interference Screws.

Screws are designed, built, and produced with the utmost care using materials of the highest quality for medical use. If these high-quality screws are used properly, they guarantee the best working outcomes. As a result, the usage guidelines and safety advice below must be followed.

The incorrect use of a screw can result in injury to the operator, patients, or other people as well as tissue damage, premature wear and tear, instrument destruction, and instrument destruction.

The operating surgeon must actively participate in the medical care of their patients. The surgeon must have a complete understanding of the instruments, their limitations, and the surgical procedure. The surgeon and the surgical team are responsible for exercising caution in the selection and use of surgical instruments. Before using implants, adequate surgical training should be obtained.

Factors that could harm the operation’s success include:

  • allergies to materials implanted.
  • regional bone tumors.
  • osteomalacia or osteoporosis.
  • metabolic disturbances and systemic disease.
  • drug and alcohol abuse.
  • Excessive shock-producing physical activity that exposes the implant to blows and/or heavy loads.
  • Patients who lack the mental capacity to comprehend and follow instructions from a doctor.
  • Unhealthy overall.
  • Potential Negative Effects

The most frequent side effects following implantation are as follows:

  • screw loosening that may be caused by the implant’s tissue reaction or by the fixation site’s repeated loading.
  • the two stages of infection.
  • additional bone fracture brought on by abnormal stress or weakened bone structure.
  • a hematoma or pressure-related pressure that causes temporary or permanent neural damage.
  • Hematomas from wounds and slow wound healing.
  • Venous thrombosis, pulmonary embolism, and cardiac arrest are examples of vascular disease.
  • heterotopically ossifying.
  • Due to the Interference Screws’ presence, there is pain and discomfort.
  • Implant mechanical failure, such as bending, loosening, or breakage.
  • Implant migration leading to injury.

Preoperative Planning for Interference Screws

A thorough clinical evaluation of the patient is followed by the execution of the operating plan. X-rays are also required to provide a clear picture of the bony anatomy and any associated deformities. A full size of interference screws, as well as the appropriate implantation tools, must be on hand for the procedure.

The patient should be informed of any potential risks and side effects related to implant use by the clinician. It is critical to ascertain the patient’s allergy status to all implant materials prior to surgery. The patient must also be made aware that the device’s performance cannot be guaranteed because problems may shorten the device’s useful life.

Interference Screws Precautions

During reprocessing, verify that the instruments are functional and look for wear. Before using, replace any worn-out or broken instruments.

It is advised to use the tools designated for this screw.

Use caution when handling equipment, and put used bone-cutting tools in a sharps container.

Always use suction and irrigation to remove any debris that may be produced during implantation or removal.

Interference Screws Warnings

Interference When excessive force is applied, screws have the potential to break while in use. We advise that the broken part be removed whenever possible and practical for the particular patient, though the surgeon will ultimately decide whether to do so based on the risk involved. Be aware that implants lack the natural bone’s strength. Significant loads may cause implants to fail.

The user’s glove or skin may be pinched or torn by the sharp edges or moving joints of some instruments, screws, and cut plates.

Be sure to get rid of any fragments that weren’t fixed during surgery.

While the surgeon will ultimately decide whether to remove the implant, we advise that fixation devices be taken out as soon as it is safe and practical for the specific patient and after their purpose as a healing aid has been fulfilled. To prevent refracture, implant removal should be followed by adequate post-operative care.

Interference Screws General Adverse Events

There are risks, side effects, and adverse events associated with all major surgical procedures. While there are many possible reactions, the following are some of the most frequent ones: issues related to anesthesia and patient positioning (such as nausea, vomiting, dental injuries, neurological impairments, etc.), thrombosis, embolism, infection, damage to nerve and/or tooth roots or other critical structures, such as blood vessels, excessive bleeding, damage to soft tissues, including swelling, abnormal scar formation, functional impairment of the musculoskeletal system, and pain